說到潤滑,你會想到什么?它應該是先產生一層有厚度的膜,從而去分離兩個金屬表面的基礎油,因為潤滑油的作用就是為了避免金屬間的表面接觸。所以在這種需求下,油品就必須能提供摩擦表面分離的能力,這就需要三個支撐因素——相對速度、基礎油粘度和負荷量。這三個因素也會受到溫度、污染以及其它因素的影響。當油膜厚度平衡了這些因素,即借助于相對速度產生粘性流體膜將兩摩擦表面完全隔開,由流體膜產生的壓力來平衡外載荷,就稱為流體動力潤滑。
在具有滾動接觸(可忽略的相對滑動運動)的應用中,即使具有較大的局部壓力點,也可能會影響金屬表面間的油膜厚度。其實這些壓力點也起著重要作用?;A油的壓力和粘度關系允許油品粘度因較高的壓力而暫時性增加,這稱為彈性流體動力潤滑,盡管油膜會很薄,但依然能產生一個完整的油膜分離。
在實踐當中,機器表面最理想的狀態就是能實現完全分離,薄膜厚度就是為減少摩擦和磨損提供最好的保護。但是如果不具有滿足這些油膜厚度的條件,例如當相對流速不足、粘度不足或負載過大時,會發生什么情況呢?其實大多數機器的設計和操作參數都允許速度不足的情況存在,比如在啟動、停止或方向運動變化時。當溫度過高也會導致粘度降低,過度污染同樣會使得油膜間隙中的磨粒接觸。
當流體動力學或彈性流體動力學潤滑的先決條件未滿足時,基礎油將要在所謂的邊界接觸條件下尋求支撐,這種支撐因素就需要尋找具有摩擦磨損控制性能的添加劑。因此,基礎油和添加劑就被調和在一起生產出符合特定需求的潤滑油脂產品,從而減輕預期會產生的邊界潤滑,該潤滑劑就具有油膜強度和邊界潤滑性能。